
,
b

X-564-66-73

.

PROGRAM DOCUMENTATION

BY
HOWARD R. STAGNER

1 GPO PRICE $. ,

CFSTl PRICE(S) $

Hard czspy (HC)- /. 5 8

Microfiche (MF) L5 -a
fl653 July 65

FEBRUARY 1966

/

GODDARD SPACE FLIGHT CENTER
GREEWBELT, MARYLAHD

a .

0 ITHRUI

~ N66 30361 .'

i / 9
:ACCTS510N NUMBER)

1

< 6F" (PAGES)

'(NASA mx-sK3-3r CR OR TMX OR AD NUMBER1

4

ItSrTEGO RY)

I
I -

X-564-66-73

PROGRAM DOCUMENTATION

bY

Howard R. Stagner

February 1966

Goddard Space Flight Center
Greenbelt, Maryland

PROGRAM DOCUMENTATION

Howard R. Stagner
Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

A discussion of programming documentation, the need for it,
its functional role, and structure i s given, followed by a detailed
outline of requirements for complete documentation.

-.

iii

TABLE OF CONTENTS

Page

Abstract . iii

INTRODUCTION 1

FUNCTIONAL ROLE AND STRUCTURE OF DOCUMENTATION 2

DOCUMENTATION SPECIFICATIONS 3

I . Introduction 3

A . Purpose of Program 3
B . Environment 3
C . Specifications 3

II . General Description 3

A . General Logical Flow or Block Diagram
B . Description of General Logical Flow
C . General Data Flow Diagram 4
D . Description of General Data Flow

3
3

4

111 . Detailed Description 4

A . Programriiii-g S t ~ i ~ d ~ ~ d s .
B . Main Program 4
C . Subroutines . 5
D . Macros. Procedures 6
E . Program Description Tables
F . Input Data Formats
G . Output Data Formats
H . Internal Table and Buffer Formats

4

6
6
8
8

..............................

IV . Operating Procedure
A . Program Description
B . Computer Environment
C . Set-up Requirements
D.Execution. 9
E.Operation 9
F . Console Messages
G . Normal Terminating Procedures
H . E r r o r Terminating Procedures
I . Recovery and Restart Procedures 10

V . ProgramMater ia l 10

9

9
9
9

9
10
10

.....................

V

PROGRAM DOCUMENTATION

INTRODUCTION

Program documentation, particularly from a program maintenance stand-
point, has traditionally received the lowest priority and been the least adequate
feature of any programming task. The two prime reasons fo r this are, of course,
lack of time and lack of standards. Coming last in the chronological process of
designing, coding, and checking out a program, there is usually not enough time
to adequately prepare the final documentation of a program before the money
allocated for development of that program runs out o r the programmer has to go
on to some other tasks. Usually what happens is the documentation that grew
along with the program is hurriedly combined with the original specifications
(which a re no longer completely valid by this stage of the development), and then
minimum operating instructions are added to form the f inal documentation. A
major fallacy of this procedure is that what may have been adequate documenta-
tion during development of a program is usually quite inadequate for later main-
tenance of that program, which after all is one of the most important reasons for
documentation. To make matters worse, programmers themselves are also in
a state of flux. A programmer may be here today but tomorrow he will either
be with another employer o r on a new task with the same employer. In either
case he cannot be expected to pick up a program he wrote 6 months ago and
readily recall how or even at times what he was doing at certain points in the

programmers are so transient is to free themselves of the albatrosses around
their necks-the old programs that come back to haunt them because a change is
needed but nobody else wants to o r can make the change because of inadequate
documentation.

-
prepam, lZl!ess he has adeq2ate dccumentatien. f2ct I suspect ene reason

Certain universal documentation standards do exist, principally in the form
of flow chart symbol standards, but by themselves flow charts are inadequate.

--
I his is not to say, however, that there should be an ail inclusive documenta-

tion standard. Such a standard would be as impractical and unwieldly as a uni-
versal program. Documentation requirements obviously vary with the size and
complexity of the program, with the experience of the creators, users , and main-
tainers of the program, and with the use to which the program will be put. Cer-
tainly where an agency contracts out of house for the development of a program
which will be used and probably maintained inhouse there is a need fo r rather
detailed documentation. The remainder of this paper is an attempt to outline a
documentation standard for use in such cases. Depending on the situation, all o r
par t s of this standard may be useful in a particular programming task.

I

1

FUNCTIONAL ROLE AND STRUCTURE OF DOCUMENTATION

Final documentation of a program should provide three things: (1) a sys-
tems description, (2) operating instructions, and (3) detailed design and mainte-
nance information. In larger systems these functions should he handled in at
least three separate documents. The systems description document would be
slanted toward the person who is not directly involved with the program but who
needs to know what the program does, what environment it operates in, and how
it relates to other areas of a la rger system. This document would thus be gen-
e ra l and tutorial in nature. It should briefly describe the project or overall SYS-

tem of which the program is a part and it should show the relation of this pro-
gram to the total system, the source of inputs, the purposes and forms of outputs,
and the functions performed in the program. This functional description is best
presented a s a combination of text and general flow diagrams both of the major
functional o r logical flow type and of the data flow type,

A second document would be directed towards the actual users of the
program-the computer operators and those who prepare the input data and
handle intermediate and final output data. This document would describe the
machine environment required by the program and delineate the format of all
program input and output. It should contain a special section for the computer
operators in which all set-up requirements, program-operator messages, e r r o r
handling and recovery procedures, and output labeling information is assembled.

c

The third document should provide sufficient information for understanding
the detailed design and functional behavior of the program so that output results
can be verified through an understanding of the specific algorithims used to
generate those results and so that the program can be modified to meet changing
requirements. Of necessity this document must be considerably more detailed
and specific than the first document. It should contain a detailed functional flow
diagram with an accompanying description showing all logical paths and the
hierarchy and inter-relation of all program elements. All program elements
must be fully documented and the internal structure and purpose of buffers, data
areas , tables, communication cells, and program switches must be given. Be-
sides describing what is done at all steps in the program, the documentation
should describe __ how it is done and very importantly, why it is done at that par-
titular time and place in the program-without belaboring the obvious.

-

These three documents may of course be combined into one for smaller
programs and may need to be expanded into more modules as the system size
increases. In addition the functional arrangement will have to vary to meet the
needs of a particular program. For example in documenting a monitor System
o r source language the second document would be slanted toward programmers

2

and not computer operators. It goes without saying that this basic concept is
modular upward and downward to document the assembly of subroutines and
subprograms into programs, programs into modules, and modules into large
systems.

DOCUMENTATION SPE CIFICATIONS

The following categorical requirements should be met for a program to be
considered a s fully documented. The categories are arranged in a logical se-
quence such as might be used in documenting a medium size program that stands
by itself, however the physical arrangement of the documentation is of necessity
dependent on the purpose, type, complexity, and usage of the program and its
relation to other programs comprising a complete system.

I. Introduction

A. Purpose of Program-Why the program was developed, what it does in
general, and, if applicable, how it relates as part of a system.

B. Environment-Machine requirements of the program in general (ma-
chine type, core storage needed, special pherepherals), operating mode (real time ,
on-line, etc), and types and sources of &ti?. iqxt anc! xtpct..

C . Specifications-Outline the design, production, and operational require-
ments and restraints of the program, i.e. what it is supposed to do in detail, and
when, where, and how it is supposed to do it in general.

II. General Description

A. General logical flow o r block diagram of the toki progi'aiii on ;1. r i j o r
functional or operation level to stress and clarify the ideal flow and the inter-
relationship s between major functions.

B. Description of general logical flow diagram with a key for relating the
description to the flow diagram. For each block in the flow diagram the descrip-
tion should explain what is done and why it is done when this is not immediately
self-explanatory from the flow diagram. It should mention the techniques employed
and give insight into the wherefore of the flow diagram.

3

C . General data flow diagram of the program on a conceptual level. This
may require two diagrams, one showing the external data flow, i.e. tape and
cards in, intermediate tape out, final tape out, listing out, and one showing data
flow internally to the machine, i.e. tape to core to drum on file basis, back to
core on record basis, merging, processing, transferring to output area, etc.

D. Description of data flow diagrams keyed to the flow diagrams. Exposi-
tory remarks to clarify flow diagrams such as chronological flow, purpose of
assembling data on drum temporarily, etc.

III. Detailed Description

A. Programming Standards-Flow chart symbols (if not ASA standards
reference on appendix for detailed description), conventions followed, ordering
of listings (alphabetical, by function, etc.) , internal ordering of program coding
.(entry points, equates, dimensions, exemtable instructions, tables, etc.) sym-
bolism convention, source languages used, etc.

B. Main Program, Control Program, Driver Program or Main Subprogram

1. Purpose-Short description of what it does, general explanatory
information essential to understanding purpose and function of the program

2. Type-Functional type (real-time, driver), source language.

3. External References-Common areas and communication cells that
are referenced o r set by this routine.

4. Method and Structure-Detailed description of algorithms used,
formulas, techniques, causes of e r r o r conditions and resulting action.

5 . Detailed Flow Diagram-Still on a functional level not representing
coding details (summarizing and explaining not echoing coding), yet going
into more specific details than the general flow diagram. All logical paths
should be shown including paths followed in e r r o r conditions. Setting
and testing of all program switches should be shown. See also Sec-
tion 111-C-7.

6. Description of detailed flow diagram keyed to flow diagram-should
explain what and why for areas in flow diagram that are not immediately
self evident and to clarify flow, cause and effect, and interrelations be-
tween areas of the program.

4

..

7. May contain local symbol and switch glossary, symbol cross refer-
ence table, subroutine cross reference table, formats of buffers, tables,
list of program flags and their meanings.

C . Subroutines-Each subroutine description should contain tbe following
sections (requirement may be relaxed where section does not apply o r in very
small subroutines which can be described in a few words).

1. Purpose-Same a s detail for main program (Section ID-B-1).

2. Calling Sequence-List of parameters, all possible values of param-
eters and their meaning, format of parameters (floating point, etc.), type
of calling sequence (Fortran IS7 address list, values in arithmetic
registers, etc.) .

3. Environment- Condition of computer at entrance, during operation,
and at exit of subroutine (interrupts disabled, enabled), pre-requisite con-
ditions, register status at entrance and exit, necessary global input data
areas , output o r result data areas, usage of routine, etc.

4. Type-Source language, mode of operation (realtime, interrupt,
normal, re-entrant, recursive, multiprogrammed, etc .) .

5. Conventions Used-If local to this subroutine and not described in
Section III-A.

6 . Method and Structure-Detailed description of algorithms used,
formulas, techniques, causes of e r r o r conditions and resulting action,
other essential information.

7. Detailed Flow Diagram-On functional level not a mirror-image of
the coding yet showing all logic paths, the setting and listing of all switches,
all decisinn pointsj etc. Ideally flow diagram should be such that non-
functional changes in the coding affecting only coding techniques, indexing
methods, minor instruction sequence should not require a change in the
flow chart. See also Section III-B-5.

8. Description of Detailed Flow Diagram-Keyed to flow diagram. See
Section III-B-6.

9. External References-Common areas and communication cells that
a r e referenced o r set by the routine.

10. Buffers. Tables, and Constants-Formats of local buffers, tables,
and constants.

11. Usage for non-general routines to describe what programs use this
routine and what tables and communication cells they set.

12. May contain local symbol and switch glossary, local symbol cross
reference table, local subroutine c ross reference table, micro flow
charts, macros local to this routine, etc.

D. Macros, Procedures, Generative Coding

1. Purpose and Function-What it does, general explanatory informa-
tion essential to understanding purpose and function of the element.

2. Calling Sequence-Names of entry points and parameter string with
structure and meaning.

3. Method and Structure-Techniques used, amount of code generated
(may vary), internal logics and conditional situations, etc.

E. Program Description Tables

1. Routine Cross Reference Table-Program, subprogram, subroutine,
o r other routine name, names of routines that call this routine, names of
routines this routine calls.

2. Symbol Glossary-Glossary of control words, switches, labels, etc.
used in flow charts and coding with definition and explanation of meaning
and use of the symbol. Descriptions of control words, switches, com-
munication cells should include a list of all values that switch can assume
and the corresponding meaning.

3. Grouping of Common o r other globally defined areas and symbols.
Listing them in one place eliminates the duplication that would result from
listing these items in the description of each subroutine that references
them.

F. Input Data Formats

1. The required physical arrangement of all input data must be given.
In general the following should be covered in describing individual fields:

6

a. Usage-Purpose of field, range of possible values and meanings,
labels used by program in referencing field.

b. Units-Dollars, milliseconds, engineering units.
--

c. Type-Fixed field, free field.

d. Format-Field size, location in record, block, and/or file, field
delimiting symbols, free field characteristics, sequence of fields,
reference to standard formats used such as Fortran types, partial word
structure, etc.

e. Representation-BCD, binary, integer, floating point, fixed point,
alphanumeric, boolean, etc.

f. Limitations-Requirements for leading zeros, techniques for
indicating void o r empty fields, signing requirements.

g. Sequence-Sequence between fields, physical blocks (records,
cards), continuation symbols, terminating symbols, number of cards).

2. Card Input-List by function, i.e. control card, data card. Give
punching standard (BCD code , row or columnbinary), reference punch
code - ~ e d (13X, TvT~~ivzc, ClX) all of section 1 above applies. Give card
size (80 column, 90 column). Include chart of card arrangement. Describe
nature of checksums o r parity punches.

3. Paper Tape Input-Number of channels, punch code used.

4. Magnetic Tape Input-Density, parity, channels per character, na-
ture of checksums used. Describe record o r block structure, file struc-
ture, and tape structure, i.e. multi-file reels, multi-reel files, end-of-
file marker usage, end d daiz iiii +&pe indimtinn (double end of file,
special block), maximum record size and whether fixed o r variable, in-
termixing of records o r blocks if several different types are intermixed,
i.e. label record, data record, orbit profile record, file summary record,
etc. Give chart explaining above record, file, and tape structures. All
of section 1 above applies.

5. Console o r Typewriter input all of section 1 above applies.

6 . Disk pack or other random access input all of section 1 applies with
special emphasis on structure and arrangement of data blocks.

7

G. Output Data Formats-Same as for input data formats with followbg
additions :

1. Magnetic tape Output-Same as input only also describe handling of
end-of-tape marker (tape backspaced, 2 end-of-files written, then tapes
swapped o r simply swapped with no end of files o r backspacing o r 2 end
of files written after end of tape marks, etc.).

2. Console or Typewriter Output-Can be described in operating
procedures section.

3. Printer Output-Section 1 applies. Heading and all fields should be
explained.

4. Disk pack o r other random access output all of section 1 applies.
Emphasis should be placed on fields describing amount of disk used,
starting, ending address, data structure.

H. Internal Table and Buffer Formats- Adequate documentation of in-
ternal tables and buffers is especially important because this is nothing intrinsic
in the source language coding of such non-executable program elements that
reveals what they do. For this reason a detailed description of all tables and
buffers must be given. This description should cover the following:

1. Name of the Element

~

2. Purpose o r Function of the Element

3. Usage-What routines reference this element, i.e. which ones set
values into the element o r change values in the element, which ones only
reference it, etc.

4. Type of Element-Common area, input buffer, etc.

5. Size of Element

6. Format of the element including a chart and/or listing of the loca-
tion of each item, In general most of section F-l applies.

7 . Limitations-Range of values that each element can legally assume
and the logical action each value governs.

IV. Operating Procedure

A. Program Description-Brief summary of the purpose and functions
performed by the program.

B. Computer Environment- Describe computer type, core memory size
needed, pheripheral devices and channels required, etc.

C. Set-Up Requirements-Describe complete run deck required to exe-
cute the program, giving illustration of sequence of cards and format of cards.
Describe input and output assignments and limiting conditions - Le. requires
two blank tapes to be assigned to output logical unit OUT, requires special
version of MONITOR, etc. For magnetic tapes give label assignments, number
of servos to assign to each label, channels recommended for each label (and
channel and unit required if absolute assignment is used). For printer give
paper size, number of carbon copies required, etc. Give jump switch settings
and their meanings. Describe all parameter cards and all possible values of
the parameters and their respective meaning.

D. Execution-Describe any unique requirements for loading and starting
execution of the program and describe standard operating procedures for this
program. SOP would include action to follow on tape faults, conditions requiring
post mortem dumps, etc.

E. Operation-Describe the operation of the program from the computer
operators standpoint. This description should supplement the general descrip-
tions given in Section I1 and Section IV-A. The description should be related to
things the operator can observe. For example "following set up instructions the
program reads the label records from tapes ALPHA and GAMMA and writes a
file heading on the printer. It then merges records from ALPHA and GAMMA,
occasionally entering what appears to be a small loop while in computes eigen
values. . . . I ' Only the normal program and data flow should be described here.
Error recovery procedures describsei: in section below can then be related to
this description.

F. Console Messages

1. Requiring Operator Reply-List alphabetically all program mes-
sages which require an action of some sor t by the operator. List the
action required or the input message options along with a brief explana-
tion of the purpose and resulting action of the message.

9

2 . Not Requiring Operator Reply-List all messages of an informative
nature with a more detailed explanation of the cause and meaning of the
message if it is not self explanatory.

G. Normal Termination Procedure

1. Describe normal ways that the job can be terminated. List all ma-
terials which must be saved and describe how these should be labeled
physically and what type of run logging information should be recorded.

H. E r r o r Termination Procedures-List conditions which operator can
identify and e r r o r termination. Describe all deviations from the normal termi-
nation procedure described above such as which output need not be saved, whether
o r not the operator can recover the run by correcting input cards, and if he can,
what specific action he should take to correct the e r r o r or what indications such
as program register contents he should note on the log sheet for the run.

I. Recovery and Restart Procedures-Describe any normal optional
methods available for terminating the run so that it can be continued at a la ter
time (if possible). Describe restarting procedures and recovery procedures
from e r r o r terminations including methods of validating proper recovery.

V. Program Material

The following physical program material must be furnished as a minimum:

1. Two copies of the final object program, either on magnetic tape or
on cards.

2. Two copies on magnetic tape o r cards of the source language pro-
gram from which' the final object program was generated.

3. Two copies of the listing of the final source language program
bound between hard covers.

4. Two copies of a listing of the contents of a program tape if such a
tape is furnished. This table of contents should list program name,
version, etc.

5. Two copies of a program memory allocation created at program
execution time should be furnished.

10

6. Samples of typical printer output from the program may be included.

7. Two complete execution decks must be provided.

8. Two complete program update decks (minus the change and update
cards) must be provided if techniques other than standard ones are nec-
essary for updating the program.

VI. Appendixes

In editing the documentation liberal use of appendixes can aid in the utility
of the document. Appendixes may include such things as flow chart standards,
symbol tables, mathematical expansions, and other large tables, discussions,
and charts that would tend to break up the flow of the documentation if theywere
inserted directly in the text.

11

